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Neurobiology of Lithium

ithin decades of its discovery, lithium was found
to be the most soluble salt of uric acid and early
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Lithium remains a first-line approach for the treatment of acute mania and the prophylactic manage-
ment of manic-depressive illness, yet the underlying neurobiological mechanisms remain as yet unde-
fined. In this paper we critically examine the accumulated preclinical and clinical evidence for the action
of lithium in the brain and suggest areas that may be most productive for future investigation, i.e., mem-
brane transport systems, neurotransmitter receptor regulation, second messenger generating systems,
protein kinase C (PKC) regulation, and gene expression. In their experimental design, preclinical investi-
gations have often jeopardized the physiologic relevance of their studies by a relative lack of attention to
issues such as therapeutic concentrations, acute versus chronic exposure, and a lack of adequate cation
and/or psychotropic controls. Future studies should account for the established prophylactic efficacy of
lithium, the higher risk for relapse into mania after abrupt discontinuation, the ability of lithium to stabi-
lize recurrent depression associated with unipolar disorder, and the efficacy of lithium in the treatment of
refractory major depressive disorder in the presence of an antidepressant. Studies of the action of lithium
in receptor mediated phosphoinositide signaling in the brain over the past several years have opened up
heuristic lines of investigation that stem from lithium’s uncompetitive inhibition of the enzyme inositol
monophosphatase. Subsequent studies involving regulation of inositol transport, PKC isozymes and ac-
tivity, and the expression of the major PKC substrate MARCKS (myristoylated alanine-rich C-kinase
substrate) have offered potential avenues for understanding the complexity of the action of long-term
lithium in the brain. These studies will offer us a better understanding of the neuroanatomical sites of
action of lithium and together with ongoing clinical investigations using brain imaging in patients with
manic-depressive illness a more complete understanding of the pathophysiology of this disease.
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W
observations of Alexander Ure in the 1840s addressed the
potential medicinal properties of lithium in gout. Sir
Alexander Garrod was the first to introduce the oral use of
lithia salts as a treatment for gout or “uric acid diathesis,”
which was believed to encompass affective symptoms of
both mania and depression.1–3 However, it wasn’t until the
observations of the American physician John Aulde and the

Danish internist Carl Lange in the 1880s that lithium was
considered to be a treatment of recurrent symptoms associ-
ated with depression independent of gout.4,5 After falling
into disrepute as a medication because of serious toxicity
associated with its widespread use in elixirs and tonics as
well as a salt substitute, it was the rediscovery by Cade 48
years ago and seminal clinical studies by Schou in the 1950s
that positioned lithium as an effective antimanic treatment
and prophylactic therapy for manic-depressive illness.6,7

Since Cade’s observations in 1949, numerous studies have
explored potential mechanisms for the therapeutic action of
lithium in the treatment of manic-depressive illness. Early
studies focused on lithium’s property of being a monova-
lent cation, its role in sodium transport, and its effect on
electrophysiologic properties of cells. As neurotransmitter
systems in brain were discovered over the past 45 years,
the effects of lithium on these systems and their receptors
have been examined in both animal and clinical investiga-
tions. Moreover, it has become increasingly apparent that
the underlying pathophysiology of manic-depressive illness
derives from a dysregulation of multiple signaling pathways
in limbic and limbic-related regions of the brain, which re-
sults in recurrent clinical affective symptomatology.8–11 Un-
fortunately, the majority of these studies have suffered from
a number of limitations, and interpretation has been con-
founded by several issues including a lack of attention in
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experimental design to acute versus chronic effects as well
as to clinically relevant lithium concentrations; a lack of
specificity of pharmacologic agonists and antagonists; ex-
amination of one neurotransmitter system to the exclusion
of others; overinterpretation in clinical studies of the rel-
evance of peripheral findings to the CNS; and often small
effects that have been difficult to replicate. In this review,
we will focus upon several areas of research that have pro-
vided a strategically important direction or hold the prom-
ise of a new perspective for understanding the therapeutic
action of lithium in the brain.

Several points regarding the clinical action of lithium in
the treatment of manic-depressive illness are worthy of
note as related to its mechanism of action in the brain. It is
generally agreed that the action of lithium that is most effi-
cacious in the treatment of manic-depressive illness is its
prophylactic efficacy in preventing the recurrence of affec-
tive episodes and stabilizing the course of the illness during
long-term treatment.12 Upon even rapid discontinuation of
lithium in patients who have undergone chronic treatment
for many years, symptomatology does not immediately re-
turn, but there appears to be a significantly increased risk
for relapse over the ensuing months, highly suggestive of a
withdrawal-like physiologic response.13–15 The observation
that there is a predisposition during the withdrawal period
to relapse into a manic episode should be of considerable
interest to investigators. Lithium is also effective in the
treatment of acute mania, but its action occurs over the
course of 1 week to 10 days. In the treatment of unipolar
illness, lithium has been shown to possess therapeutic ben-
efit in the prevention of recurrent episodes of major depres-
sive disorder and in the treatment of refractory episodes of
major depressive disorder. In the latter case, the effect of
lithium appears to occur in the presence of an already exist-
ing antidepressant and is apparent over a period of days to
weeks, often at plasma concentrations that are significantly
less than those used in the treatment of manic-depressive
illness.9,12 As we examine the mechanism of action of lithi-
um in the brain, it will be important to note that while it is
highly likely that more than one molecular target in the
brain accounts for these clinical properties, common sites
of action may trigger events that result in both enhance-
ment of antidepressant activity as well as stabilization of
dysregulation in multiple signaling pathways in the brain.
Moreover, such sites of action for lithium should account in
some way for its specificity of action at therapeutic concen-
trations in critical regions of the brain.

LITHIUM AND MEMBRANE TRANSPORT

Both membrane transport systems and ion channels play
roles in the regulation of intracellular lithium. Transport
systems may be driven by either ATP (adenosine triphos-
phate), e.g., the Na,K-ATPase, or by the net free energy of
transmembrane concentration gradients, e.g., the sodium-

calcium exchanger. These transport systems are likely to
be crucial for the regulation of resting lithium in the bulk
cytoplasm, as they essentially regulate all steady-state in-
tracellular ion concentration. While membrane transport
systems may exist that specifically recognize lithium and
regulate its transmembrane concentration, e.g., a gradient-
dependent sodium-lithium exchange process,16,17 it is argu-
ably more likely that the primary regulation of lithium is
affected by transport systems that accept the lithium ion as
a substitute for their normal ionic substrates. While clini-
cal studies over the years have been constrained by rela-
tively small and often variable findings, there is evidence
that Na,K-ATPase activity may be reduced especially in
the depressed phase of both unipolar depression and
manic-depressive illness, which is associated with an in-
crease in sodium retention (see reviews in references 9 and
18). Furthermore, chronic lithium treatment has been ob-
served to result in an increased accumulation of lithium
and activity of Na,K-ATPase in erythrocyte membranes
and concomitant reduction of intraerythrocyte sodium and
calcium in patients with manic-depressive illness.9 Since
free calcium ion concentration tends to parallel free so-
dium concentration, this may account for observations that
intracellular calcium is increased in patients with manic-
depressive illness.19 These data related to Na,K-ATPase
should be viewed with caution, however, since recent data
also support the evolution of specific gene products ex-
pressed and posttranslationally regulated and unique not
only to neurons but among brain regions.20–25 Thus, while
the erythrocyte may be used as a peripheral model for lith-
ium transport, extrapolations to lithium homeostasis in the
brain or as a potential genetic model for variations in ionic
homeostatic processes in the brain underlying the patho-
physiology of a disease such as manic-depressive illness
remain highly speculative.

Since most data seem to indicate that lithium achieves
an approximately equal distribution across the plasma
membrane barrier while leading to only small depolariza-
tions, it should be appreciated that the predominant form
of lithium transport must be efflux to oppose any resting
conductances that would tend to concentrate positively
charged ions within the negatively charged intracellular
milieu, which is reflected in reported brain:serum ratios in
the range of 0.76.26 While it is the balance of resting
lithium conductance and net transport-efflux mechanisms
that regulate steady-state lithium homeostasis, the gating
of ion channels on the time scale of the channel activity
will alter this homeostasis to varying degrees. Thus, acti-
vation of voltage-dependent sodium channels may play a
significant role in the regulation of intracellular lithium
concentration in neurons, such that lithium concentration
might be elevated in active neurons, on the basis of the
influx of lithium through sodium channels. However,
simple calculation reveals that the flux of lithium through
voltage-dependent sodium channels is unlikely to be im-
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portant in the regulation of lithium homeostasis, even on a
short-term basis or as a consequence of high levels of neu-
ronal activity. Moreover, in the local environment of a den-
dritic spine, the surface area to volume ratio becomes rela-
tively large, such that the lithium component of a synaptic
current can cause very significant increases in the local
lithium concentration—as much as a fivefold to tenfold in-
crease in intracellular lithium following a train of synaptic
stimuli.27 Such an activity-dependent mechanism for creat-
ing focal increases of intracellular lithium at sites of high
synaptic activity may be crucial for lithium’s therapeutic
specificity and ability to regulate synaptic function in the
brain.

LITHIUM AND NEUROTRANSMITTER
AND NEUROPEPTIDE SYSTEMS

Over the past 30 years, clinical and preclinical studies
have focused upon the effects of both acute and chronic
lithium on the regulation of monoamine neurotransmitter
systems in brain; modest attention has been given to amino
acid and neuropeptide neurotransmitters (reviewed in ref-
erences 9, 12, 28, and 29). More recently attention has
turned to lithium-induced changes in second messenger
systems and gene expression, which have served to form
heuristic lines of investigation actively being pursued.

Norepinephrine
Findings in clinical studies of lithium treatment have

generally been confounded by changes in affective state
and associated changes in activity level, arousal, and sym-
pathetic outflow and have provided conflicting evidence
for an effect of lithium on norepinephrine levels and turn-
over in brain. On the other hand, preclinical studies appear
to support an action of acute lithium in reducing the
β-adrenergic stimulated AC (adenylyl cyclase) response,
and chronic lithium in facilitating the release of norepi-
nephrine, possibly via effects on the presynaptic α2 autore-
ceptor, as well as blockade of the β-adrenergic receptor
supersensitivity after presynaptic depletion of norepineph-
rine (see review in reference 9).

Dopamine
Clinical studies of dopamine metabolites in the periph-

ery of bipolar patients have similarly been confounded
by mood and activity state. Chronic lithium has been re-
ported to prevent haloperidol-induced dopamine receptor
up-regulation and induce supersensitivity to iontophoret-
ically applied dopamine or intravenous apomorphine.30–33

Interestingly, a number of studies have reported a lack of
effect if lithium is administered after the induction of
dopamine supersensitivity suggesting that in this model,
lithium exerts its greatest effects prophylactically.34–37 Lith-
ium also appears to block amphetamine-induced behav-
ioral changes in both animals and humans.28,29,35,36,38–41

Serotonin
Preclinical studies indicate that the effects of lithium on

serotonin (5-HT) function may occur at multiple levels
and result in an enhancement of serotonergic neurotrans-
mission, although its effects on 5-HT appear to vary de-
pending on brain region, length of treatment, and 5-HT re-
ceptor subtype (see review in reference 9). Interpretation
of studies attempting to clarify the roles of presynaptic
versus postsynaptic receptors in mediating the effects of
lithium on 5-HT function have been confounded by the
relative lack of understanding of the numerous receptor
subtypes and their distribution, as well as the existence of
subtype-specific agonists and antagonists. However, there
is accumulating evidence that lithium produces a subsen-
sitivity of presynaptic inhibitory 5-HT1A receptors, which
can result in a net increase of the amount of 5-HT released
per impulse.42–47 These findings are consistent with obser-
vations that short-term lithium enhances the efficacy of
the ascending (presynaptic) 5-HT system48,49 and have
formed the basis for a series of clinical investigations
demonstrating the efficacy of lithium as an adjunct to anti-
depressants in the treatment of refractory depression.

Acetylcholine
Neurochemical, behavioral, and physiologic studies

have all suggested that the cholinergic system is involved
in affective illness50 and that lithium enhances the synaptic
processing of acetylcholine (ACh) in rat brain. Notably,
lithium effectively potentiates seizures induced by a mus-
carinic agonist which are markedly attenuated by central
myo-inositol administration,51,52 consistent with effects of
lithium on receptor-mediated PI (phosphoinositide) sig-
naling discussed below. In addition, studies by Evans and
colleagues53 have suggested that the role of lithium in
the lithium-pilocarpine seizure model appears to occur
through a presynaptic facilitation of excitatory neurotrans-
mission mediated by protein kinase C (PKC). Thus, lithi-
um may target cholinergic neurotransmission and chroni-
cally may play a role in preventing muscarinic receptor
supersensitivity through interaction within PI signaling
systems. These findings are consistent with an effect of
chronic lithium in preventing receptor-mediated supersen-
sitivity as observed in both the dopaminergic and norad-
renergic systems and suggest a putative site of action for
lithium beyond the receptor at receptor-effector coupling
and/or intracellular second messenger systems.

Amino Acids
While relatively less attention has been paid to effects

of lithium on amino acid and neuropeptide regulation
in brain, dysregulation of GABAergic neurotransmission
(gamma-aminobutyric acid [GABA] is the major inhibitory
neurotransmitter in brain) has been postulated to play a role
in the etiology of affective disorders.54–56 In an albeit lim-
ited series of patients, GABA has been observed to be re-
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duced in CSF of depressed patients57–59 and in the plasma
of bipolar patients.60 Previously low levels of plasma and
CSF GABA appear to normalize in bipolar patients being
treated with lithium,61,62 though baseline GABA levels ap-
pear unrelated to clinical responsiveness to lithium.63 While
preclinical studies have been constrained by the limitations
in design and methodology noted earlier, investigators have
reported that lithium produced elevations in GABA in the
striatum and midbrain,64–66 GABA turnover in the hippocam-
pus and striatum,67 and a potentiation of kainic acid-evoked
[3H]GABA release in striatal neurons.68 The effect of lithi-
um on glutamate, a major excitatory neurotransmitter in
brain, has been studied more recently by using monkey
cerebral cortical slices—lithium was found to stimulate
glutamate release at doses ranging from 1.5 to 25 mM.69

It is of interest that the proconvulsant action of lithium in
pilocarpine-treated rats described earlier is blocked by the
noncompetitive NMDA (N-methol-D-aspartate) receptor an-
tagonist, MK-801.70 However, chronic in vivo lithium treat-
ment results in a transient impairment of ACh-induced po-
tentiation of current responses elicited by NMDA in
hippocampal CA1 neurons.71

Neuropeptides
Preclinical studies of neuropeptides have revealed di-

verse effects of lithium on multiple systems including the
opioid peptides, substance P, tachykinin, neuropeptide Y,
neurokinin A, and calcitonin gene-related peptide. Com-
parisons between studies are difficult due to differences in
time and dose of lithium administration; however, for the
most part, an increase in neuropeptide levels in brain has
been observed and in the case of both dynorphin and
tachykinin, the increase is associated with an increase in
mRNA.72,73 It has also been reported that chronic lithium
abolishes both the secondary reinforcing effects of mor-
phine and the aversive effects of the opioid antagonist, nal-
oxone.74–78 However, in one of the few applicable clinical
studies, CSF levels of various pro-opiomelanocortin pep-
tides were examined in euthymic bipolar patients before
and during lithium treatment; no significant effects of lith-
ium on the CSF levels of any of the peptides were ob-
served.79,80 Alterations in the regulation of these neuropep-
tides, particularly in basal ganglia, may be of interest in
regard to the commonly observed lithium-induced side-
effect of tremor.

LITHIUM AND SIGNAL TRANSDUCTION

Phosphoinositide Cycle
Lithium, at therapeutically relevant concentrations in

brain, is a potent inhibitor of the intracellular enzyme, in-
ositol monophosphatase (Ki = 0.8 mM), which plays a ma-
jor role in the recycling of inositol phosphates.81,82 Since
the brain has limited access to inositol other than that de-
rived from recycling of inositol phosphates, the ability of a

cell to maintain sufficient supplies of myo-inositol can be
crucial to the resynthesis of the PIs and the maintenance
and efficiency of signaling.83–85 Furthermore, since the
mode of enzyme inhibition is uncompetitive,86,87 the ef-
fects of lithium have been postulated to be most pro-
nounced in systems undergoing the highest rate of PIP2

(phosphatidylinositol 4,5-bisphosphate) hydrolysis. Thus,
Berridge and associates88,89 first proposed that the physi-
ologic consequence of lithium’s action is derived through
a depletion of free inositol, and that the selectivity of
lithium could be attributed its preferential action on the
most overactive receptor-mediated neuronal pathways.
Since several subtypes of adrenergic, cholinergic, and se-
rotonergic receptors are coupled to PIP2 turnover in the
CNS, such an hypothesis offers a plausible explanation for
the therapeutic efficacy of lithium in treating the dysregu-
lation of neurotransmitter signaling as underlying the
pathophysiology of bipolar illness.8,10 The preponderance
of data indicates that the effects of lithium on PI signaling
can be prevented and reversed in the presence of high con-
centrations of exogenous myo-inositol.52,84,90–92 In a recent
preliminary clinical investigation that used proton mag-
netic resonance spectroscopy (1H-MRS), lithium adminis-
tration to bipolar depressed and manic patients produced a
significant reduction in the levels of myo-inositol in fron-
tal (but not occipital) cortex; these changes are observed
after 5 days of treatment and persist for at least 3 to 4
weeks.93 The action of lithium in inhibiting the recycling
of inositol through the receptor-mediated hydrolysis of
PIP2 is thought to cause an accumulation of critical pools
of diacylglycerol resulting in activation of PKC isozymes
responsible for mediating long-term alterations in cell
function.8,10,94 In fact, downstream effects of chronic lithi-
um on embryonic development and regulation of PKC and
MARCKS protein triggered by changes in PI signaling
have also been shown to be dependent upon myo-inositol
availability.95–97 Studies wherein the effects of myo-
inositol have been difficult to demonstrate may be attribut-
able, at least in part, to significant differences in inositol
transport and accumulation among cell types.85 Thus,
overall, both the preclinical and clinical data suggest that
although lithium does bring about a relative depletion of
myo-inositol in the brain, its therapeutic effects are likely
mediated by a secondary cascade of signaling changes,
rather than reductions in myo-inositol per se.9,10,98

Adenylyl Cyclase
The other major receptor-coupled second messenger

system in which lithium has been shown to have signifi-
cant effects is adenylyl cyclase (AC), which generates
cyclic adenosine monophosphate (cAMP). cAMP accumu-
lation by various neurotransmitters and hormones is re-
ported to be inhibited by lithium at high therapeutic con-
centrations and above both in vivo and in vitro, but the
sensitivity, especially in brain, appears to be less than that
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observed in the PI system.45,99–107 In fact, lithium inhibition
of vasopressin-sensitive or thyroid-stimulating-hormone-
sensitive AC is generally believed to underlie two of
lithium’s more common side effects, namely nephrogenic
diabetes insipidus and hypothyroidism.108–111 Norepineph-
rine- and adenosine-stimulated cAMP accumulation in rat
cortical slices are inhibited significantly by 1 to 2 mM of
lithium; in human brain tissue, the IC50 for lithium inhibi-
tion of norepinephrine-stimulated cAMP accumulation is
approximately 5 mM.112 Prolonged lithium exposure pro-
duces little effect on β-adrenergic-stimulated AC but an in-
crease in basal cAMP has been observed.100,107,113 Data sug-
gest that lithium’s inhibition of AC in vitro may be due to
competition with Mg++ for a binding site on the catalytic unit
of AC.99,107 However, the inhibitory effects of chronic
lithium treatment on rat brain AC are not reversed by Mg++,
and these effects still persist after washing of the membranes
but are reversed by increasing concentrations of GTP (gua-
nosine triphosphate).104 These results suggest that the physi-
ologically relevant effects of chronic lithium may be ex-
erted at the level of signal-transducing G proteins at a
GTP-responsive step.

G Proteins
Since lithium has been shown to affect both PI turnover

and AC activity, a series of studies have focused on
mechanisms shared by these two major second messenger
generating systems, namely the signal-transducing G pro-
teins. As noted above, experimental evidence has shown
that lithium may alter receptor coupling to PI turnover in
the absence of consistent changes in the density of the re-
ceptor sites themselves. When fluoride ion or GTP analogs
that directly activate G protein-coupled second messenger
responses were used, studies in rat brain after chronic lith-
ium exposure have revealed either no change114 or an at-
tenuation115 of PI turnover. While there have been reports
of a direct effect of lithium on receptor-mediated G protein
binding of guanine nucleotides in brain membranes, such
data have been difficult to replicate and are physiologi-
cally inconsistent.116–118

Investigations have also addressed the role of G pro-
teins in the action of lithium-induced attenuation of recep-
tor-mediated AC activity in both rodents and humans.
These studies have revealed evidence for an increase by
chronic lithium of pertussis toxin-catalyzed [32P]ADP-
ribosylation of inhibitory G proteins in both rat brain as
well as platelets from volunteer subjects treated for 2
weeks.119,120 These data provide no evidence for a change
in the amount of the G proteins and suggest a stabilization
of the inactive undissociated αβγ heterotrimeric form of
the inhibitory G protein. This was accompanied by an en-
hancement of both basal and postreceptor-stimulated AC
in both the rat brain and platelet preparations, which is
consistent with an uncoupling of the tonic inhibitory influ-
ence of the G protein.11 These data are also consistent with

the studies demonstrating that effects of chronic lithium
exposure may be exerted at a GTP-responsive step and
may result in an alteration in the conformational state
(active/inactive) of the G protein. Such a contention is
supported by the recent observation that chronic in vivo
lithium administration reduces the subsequent in vitro sen-
sitivity of rat cortical membranes to guanine nucleotide-
induced reductions in pertussis toxin catalyzed [32P]ADP-
ribosylation.121 This is also consistent with the results of
Mork and Geisler,105 who demonstrated that the addition of
exogenous guanine nucleotides (but not Mg++) was able to
overcome the effects of lithium on rat brain AC activity.
Most recently, it has been shown that lithium promotes
calpain-mediated proteolytic cleavage of Go, effects which
have been postulated to occur via a stabilization of the G
protein in its αβγ heterotrimeric conformation122; more-
over, these investigators also found that the addition of
GTPγS was able to overcome the effects of lithium. Thus,
these findings suggest that chronic lithium may lead to the
GTP-dependent stabilization of Gi (and Go) in the undisso-
ciated αβγ conformation.

At present, the possible effects of chronic lithium on
the absolute levels of Gαs and Gαi remain unclear; two
independent laboratories have not observed any alter-
ations,120,123,124 whereas another laboratory has reported
small but significant decreases in the levels of the Gαs,
Gαi1, and Gαi2 in rat frontal cortex.125 However, chronic
lithium administration appears to reduce the mRNA levels
of a number of G proteins in rat brain, including αs, αi1,
and αi2.

123,125 This is of interest in light of studies implicat-
ing PKC in the down-regulation of G protein mRNAs,126

and its posited role in the action of chronic lithium (see be-
low). In summary, although there is evidence that competi-
tion with magnesium accounts for some of the in vitro ef-
fects of lithium on G proteins and speculation that an
interaction with GTP binding might be relevant to the
chronic effects of lithium, a direct effect of lithium on gua-
nine nucleotide activation of G protein remains unsubstan-
tiated. Most recently, investigators have demonstrated that
lithium alters the levels of endogenous ADP-ribosylation
in C6 glioma cells127 and in rat brain,128 suggesting another
mechanism through which chronic lithium may indirectly
regulate the activity of these critical signaling proteins.
Thus, overall the data suggest that the long-term effects of
chronic lithium on G protein may more likely be attribut-
able to an indirect posttranslational modification of the G
protein(s) and a relative change in the dynamic equilib-
rium of the active/inactive states of protein conformation,
potentially resulting in modulation of receptor-mediated
signaling in critical regions of the brain.

Protein Kinase C and Phosphoprotein Substrates
As noted above, recent evidence accumulating from

various laboratories points to a role for PKC in mediating
the action of lithium in a number of cell systems and the
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brain (see reviews in references 10 and 93). PKC is a fam-
ily of at least 12 phosphorylating isozymes with differing
tissue, intracellular and regional distribution within the
brain, second messenger activators, and substrate affini-
ties, indicating distinct cellular functions.129–132 Posttransla-
tional phosphorylation of selective PKC protein substrates
within the cell are responsible for regulation of processes
critical to cell secretion, membrane trafficking, transcrip-
tion, ion transport, receptor signaling, and transformation.
Recent studies have demonstrated that chronic lithium ad-
ministration in rats results in a significant decrease in the
membrane-associated PKC α and ε isoforms in the hippo-
campus.133,134 It is noteworthy that exposure of neuroblas-
toma cells135 or PC12 cells136 to 1 mM of lithium in vitro
produces isozyme-selective decreases in PKCα, and (in the
case of PC12 cells) PKCε. Recent studies have also inves-
tigated the effects of valproate (an anticonvulsant with
demonstrated antimanic properties) on PKC isozymes and
substrates. Chronic valproate has been found to produce
strikingly similar reductions in the levels of PKC α and
ε.137 These findings are of particular interest and have led to
a pilot clinical investigation showing efficacy of the use of
tamoxifen, an effective PKC inhibitor, in the treatment of
acute mania.121 The precise mechanism(s) by which
chronic lithium treatment produces these isozyme-specific
effects is presently unclear; however, PKC subspecies are
known to exhibit subtle differences in their biochemical
characteristics and cellular localization and also differ in
their susceptibility to degradation after activation.138–140 In
addition, the down-regulation of the ε PKC isoform after
chronic lithium exposure can be reversed by the coadmin-
istration of myo-inositol in vivo,134 a finding that is consis-
tent with the action of chronic lithium resulting in an in-
ositol depletion, accumulation of DAG, (diacylglycerol)
and subsequent activation of PKC isozymes as described
above. While we as yet do not fully understand the precise
profile of PKC isozymes activated by lithium, we have be-
gun to investigate critical protein substrates for PKC that
may provide further insight into the mechanism of long-
term action of lithium in the brain.

The activation of PKC results in the phosphorylation of
a number of membrane-associated phosphoprotein sub-
strates, the most prominent of which in brain is the
myristoylated alanine-rich C-kinase substrate (MARCKS).
Direct activation of PKC by phorbol esters in immortalized
hippocampal cells will effectively down-regulate the
MARCKS protein.141 Chronic lithium administered at
therapeutically relevant concentration (1 mEq/kg in brain)
to rats over a 4-week period has been shown to result in
a marked reduction in MARCKS in the hippocampus,
which is not observed after acute treatment and persists be-
yond treatment discontinuation.142 The down-regulation of
MARCKS expression in brain has also been observed at
concentrations as low as 0.7 mM.134 The lithium-induced
reduction in MARCKS has recently been replicated in im-

mortalized hippocampal cells and shown to be prevented
and reversible in the presence of elevated inositol concen-
trations.95 Furthermore, activation of muscarinic receptor-
coupled PI signaling significantly potentiates the down-
regulation of MARCKS protein induced in the presence of
1 mM of lithium, which supports the role of the PI signal-
ing pathway and PKC isozymes in this long-term action
of lithium.95 MARCKS binds calmodulin in a calcium-
dependent fashion and crosslinks actin at the plasma mem-
brane; both these events are inhibited by PKC-mediated
phosphorylation that serves to translocate MARCKS from
the membrane to the cytosol.143,144 MARCKS has been im-
plicated in cellular processes associated with cytoskeletal
restructuring and signaling that may be related to long-
term neuroplastic changes in processes associated with re-
ceptor signal transduction and neurotransmitter release.
Recent studies have indicated that this action of chronic
lithium on MARCKS protein expression is not shared
by psychotropic drugs in general, but is a property of
valproate at therapeutic concentrations relevant to the
treatment of acute mania.145,146 Thus MARCKS may repre-
sent a clinically relevant target for the mood-stabilizing
action of chronic lithium, which serves to regulate aberrant
signaling in the brain of patients suffering from manic-
depressive illness.

LITHIUM AND GENE EXPRESSION

The prophylactic efficacy of lithium generally requires
a number of weeks to develop,12,94,98 suggesting long-term
neuroplastic alterations potentially mediated at the genomic
level. Indeed, increasing evidence suggests that lithium af-
fects gene expression, possibly via PKC-induced alterations
in nuclear transcription regulatory factors responsible for
modulating the expression of specific genes.147,148 Several
recent studies have demonstrated that lithium alters the ex-
pression of the immediate early gene c-fos in different cell
systems including the brain.94,149–152 These lithium-induced
effects on the expression of c-fos mRNA, generally thought
to represent a “master switch” to turn on a “second wave”
of specific neuronal genes of functional importance, offer
a mechanism for affecting long-term events in the brain.
Chronic in vivo administration of lithium resulting in clini-
cally relevant levels alters the expression of a number of
genes in rat brain, several of which are known neuromodu-
latory peptide hormones (prodynorphin, preprotachykinin)
and their receptors (glucocorticoid type II), and are known
to contain PKC-responsive elements.72,73,153–156 Recent stud-
ies have also demonstrated that the effects of both lithium
and valproate on the regulation of AP-1 DNA binding ac-
tivity in cultured cells157,158 may be mediated at least in part
by PKC. The demonstration of the long-term modulation
of the genetic expression of critical proteins involved of-
fers new strategies for unraveling the complex physiologic
effects of chronic lithium in the prophylaxis of recurrent epi-
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sodes of affective illness in patients with manic-depressive
illness.

NEUROANATOMICAL SITE OF ACTION

While data related to neuroanatomical localization of
lesions in brains of patients who have manic-depressive ill-
ness are only now being accumulated by using structural
and functional neuroimaging strategies, alterations in right
hemisphere regions related to limbic and frontal associa-
tion areas have been of particular interest (see review in
reference 11). The premise that lithium exerts its therapeu-
tic actions by acting at such specific neuroanatomical sites
and/or their cells of projection is supported by several lines
of evidence. First, atomic absorption spectrophotometric,
radiographic dielectric track registration, and nuclear mag-
netic resonance studies indicate that lithium does not dis-
tribute evenly throughout the brain after either acute or
chronic administration, but preferentially accumulates in
forebrain diencephalon, e.g., hypothalamus, and telen-
cephalon structures, e.g., caudate and hippocampus.159–170

Second, as noted previously, preclinical studies of the ef-
fects of lithium on neurotransmitter systems have revealed
changes, particularly in the 5-HT system, that are specific
to certain brain regions. Third, the relative regional and
cellular distribution of overactive ligand-gated ion chan-
nels in the brains of patients who have manic-depressive
illness may be important in dictating relative rates of
lithium transport.27 Fourth, studies assessing PI turnover
after lithium administration indicate regional differences in
inositol depletion and agonist-stimulated [3H]IP accumu-
lation, primarily between forebrain structures and hind-
brain structures.115,169,171–175 Moreover, the effects of lithi-
um will be most apparent in cells not only where inositol is
limiting, but also those undergoing the greatest activation
of receptor-mediated PI hydrolysis.176–178  Finally, regional
brain distribution of PKC isozymes and alterations in
MARCKS expression after chronic lithium, e.g., hip-
pocampus, may confer even further specificity of ac-
tion.133,142 Collectively, these studies indicate that the long-
term therapeutic action of lithium may indeed possess cell
and regional brain specificity that underlies its prophylac-
tic efficacy in the treatment of manic-depressive illness.

CONCLUSIONS

Lithium remains our most effective treatment for re-
ducing the frequency and severity of recurrent affective
episodes in classic manic-depressive illness, yet despite
extensive research, the underlying biological basis for the
therapeutic efficacy of this drug remains unknown. Lithi-
um is a monovalent cation with complex physiologic and
pharmacologic effects within the brain. By virtue of the
ionic properties it shares with other important monovalent
and divalent cations such as sodium, magnesium, and cal-

cium, its transport into cells provides ready access to a
host of intracellular enzymatic events affecting short- and
long-term cell processes. Thus, it is apparent that both
clinical and preclinical investigations of the effects of
lithium would result in the “dirty” characteristics of its
multiple sites of pharmacologic interaction. However, re-
cent investigations may implicate a role for ligand-gated
ion channels in determining relative specificity in cell/
regional transport in brain that may reflect aberrant signal-
ing underlying the pathophysiology of manic-depressive
illness. Moreover, such dysregulation of signaling may
also serve to dictate cell/regional extent of inositol deple-
tion in the presence of chronic lithium that triggers PKC-
mediated downstream changes in expression of proteins
such as MARCKS and neuroplasticity that restabilize a
dysregulated pattern of signaling in critical regions of the
brain. To what extent chronic lithium alters the patterns of
gene and protein expression through PKC dependent ver-
sus independent mechanisms is yet to be discovered. How-
ever, future studies should begin addressing the relevance
of such changes to the therapeutic efficacy of this psycho-
tropic agent. Experimental designs should incorporate the
critical clinical variables that are known regarding the use
of lithium in the treatment of manic-depressive illness. As
we gain understanding of the susceptibility genes underly-
ing manic-depressive illness and the development of ap-
propriate mutant mouse models, such clinically relevant
studies of the mechanism of action of lithium will be fa-
cilitated in the future.

Drug names: amphetamine (Benzadrine), haloperidol (Haldol and oth-
ers), naloxone (Narcan), tamoxifen (Nolvadex).
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