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BOLD Preprocessing 

Functional and anatomical data were preprocessed using a flexible preprocessing pipeline[4] 

including realignment with correction of susceptibility distortion interactions, slice timing 

correction, outlier detection, direct segmentation and MNI-space normalization and smoothing. 

Functional data were realigned using SPM realign & unwarp procedure[5], where all scans were 

coregistered to a reference image using the least squares approach and a 6 parameter (rigid body) 

transformation[6], and resampled using b-spline interpolation to correct for motion and magnetic 

susceptibility interactions.  

Temporal misalignment between different slices of the functional data (acquired in ascending 

order) was corrected following SPM slice-timing correction (STC) procedure[7,8], using sinc 

temporal interpolation to resample each BOLD slice timeseries to a common mid-acquisition time.  

Potential outlier slices were identified using ART[9] as acquisitions with framewise displacement 

above 0.9 mm or global BOLD signal changes above 5 standard deviations[10,11], and a reference 

BOLD image was computed for each subject by averaging the slices excluding outliers.  

Functional and anatomical data were normalized into standard MNI space, segmented into grey 

matter, white matter, and cerebrospinal fluid (CSF) tissue classes, and resampled to 2 mm isotropic 

voxels following a direct normalization procedure[11,12] using SPM unified segmentation and 

normalization algorithm[13,14] with the default IXI-549 tissue probability map template.   

Functional data were smoothed using spatial convolution with a Gaussian kernel of 8 mm full 

width half maximum (FWHM). 

Functional data were then denoised using a standard denoising pipeline[15] including the regression 

of potential confounding effects characterized by white matter timeseries (5 CompCor noise 

components), CSF timeseries (5 CompCor noise components), outlier scans (below 85 factors)[10], 

motion parameters and their first order derivatives (12 factors)[16], session and task effects and 

their first order derivatives (4 factors), and linear trends (2 factors) within each functional run, 

followed by bandpass frequency filtering of the BOLD timeseries[17] between 0.008 Hz and 0.09 

Hz. CompCor[18,19] noise components within white matter and CSF were estimated by computing 

the average BOLD signal as well as the largest principal components orthogonal to the BOLD 

average, motion parameters, and outlier scans within each subject's eroded segmentation masks. 

From the number of noise terms included in this denoising strategy, the effective degrees of 



freedom of the BOLD signal after denoising were estimated to range from 101.6 to 133.8 (average 

131.1) across all subjects[11]. 

BOLD analysis 

First-level analysis (individual maps) 

Seed-based connectivity maps (SBC) and region of interest (ROI)-to-ROI connectivity matrices 

(RRC) were estimated characterizing the patterns of functional connectivity with 23 HPC-ICA 

networks[2] and Harvard-Oxford atlas ROIs[20]. The ROIs examined included PTSD commonly 

reported large-scale brain networks: default mode (DMN), salience (SN), fronto-parietal (FPN), 

thalami, amygdala and hippocampi . Functional connectivity strength was represented by Fisher-

transformed bivariate correlation coefficient from a weighted general linear model (weighted-

GLM[21]), defined separately for each pair of seed and target area. Individual scans were weighted 

by a boxcar signal characterizing each individual task or experimental condition convolved with 

an SPM canonical hemodynamic response function and rectified. 

Second-level analysis (group-level analyses) 

Second-level were performed using a General Linear Model (GLM)[22]. For each individual voxel 

a separate GLM was estimated, with first-level connectivity measures at this voxel as dependent 

variables (one independent sample per subject and one measurement per task or experimental 

condition, if applicable), and groups or other subject-level identifiers as independent variables. 

Voxel-level hypotheses were evaluated using multivariate parametric statistics with random-

effects across subjects and sample covariance estimation across multiple measurements.  

Inferences were performed at the level of individual clusters (groups of contiguous voxels). 

Cluster-level inferences were based on parametric statistics from Gaussian Random Field 

theory[23,24].  

Results were thresholded using a combination of a cluster-forming p < 0.001-0.005 voxel-level 

threshold, and a familywise corrected p-FDR < 0.05 cluster-size threshold[25]. 
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Supplementary Figure 1: Confusion Matrix 

Confusion matrix showing treatment perception in the two groups. Accuracy was calculated as 

the true perceived HBOT or sham divided by the total participants. Recall was calculated as the 

number of true HBOT perceptions divided by the total actual HBOT perceptions. Precision was 

calculated as the number of true HBOT perceptions divided by the sum of true HBOT 

perceptions and false sham perceptions. 
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Supplementary Table 1:  

Significant seed to voxel functional connectivity group-by-time interactions 
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