Objective: Several promising studies investigated marine omega-3 fatty acids (ie, fish oil) in borderline personality disorder (BPD), but overall effects remain unclear. The aim of this study was to obtain estimates of effectiveness of omega-3 fatty acids in BPD using meta-analysis, with a priori differentiation of affective, impulsive, and cognitive-perceptual symptom domains.
Data Sources: We performed a literature search in PubMed, EMBASE, PsycINFO, and MEDLINE, using terms related to BPD and omega-3 fatty acids. Publication date was not a restriction.
Study Selection: We included randomized controlled trials (RCTs) that compared omega-3 fatty acids to placebo or any active comparator and pooled data using meta-analysis. Five studies were included in the meta-analysis, describing 4 RCTs testing effects of omega-3 fatty acids in 137 patients with BPD or BPD-related behavior.
Data Extraction: Using a pre-piloted data extraction form, we obtained data including intervention dose, duration, and BPD symptom scale scores, differentiating affective, impulsive, and cognitive-perceptual symptom domains.
Results: Random effects meta-analysis showed an overall significant decreasing effect of omega-3 fatty acids on overall BPD symptom severity (0.54 standardized difference in means [SDM]; 95% CI = 0.91 to 0.17; Z = 2.87; P = .0041), without heterogeneity (I2 = 0.00; Q = 2.63; P = .45). A priori differentiation of relevant symptom domains showed significant effects on affect dysregulation (0.74 SDM; 95% CI = 1.21 to 0.27; Z = 3.11; P = .002) and impulsive behavior (0.45 SDM; 95% CI = 0.84 to 0.059; Z = 2.26; P = .024). However, effects on cognitive-perceptual symptoms did not reach the significance threshold.
Conclusions: Available data indicate that marine omega-3 fatty acids improve symptoms of BPD, particularly impulsive behavioral dyscontrol and affective dysregulation. Marine omega-3 fatty acids could be considered as add-on therapy.
Continue Reading...
Members enjoy unlimited free PDF downloads as part of their subscription! Subscribe today for instant access to this article and our entire library in your preferred format. Alternatively, you can purchase the PDF of this article individually.
Bender DS, Skodol AE. Borderline personality as a self-other representational disturbance. J Pers Disord. 2007;21(5):500–517. PubMedCrossRef
Pompili M, Girardi P, Ruberto A, et al. Suicide in borderline personality disorder: a meta-analysis. Nord J Psychiatry. 2005;59(5):319–324. PubMedCrossRef
Hastrup LH, Jennum P, Ibsen R, et al. Societal costs of borderline personality disorders: a matched-controlled nationwide study of patients and spouses. Acta Psychiatr Scand. 2019;140(5):458–467. PubMedCrossRef
National Collaborating Centre for Mental Health (UK). Borderline Personality Disorder: Treatment and Management. NICE Clinical Guidelines, No. 78. British Psychological Society; 2009.
Ingenhoven T, Lafay P, Rinne T, et al. Effectiveness of pharmacotherapy for severe personality disorders: meta-analyses of randomized controlled trials. J Clin Psychiatry. 2010;71(1):14–25. PubMedCrossRef
Soloff PH. Algorithms for pharmacological treatment of personality dimensions: symptom-specific treatments for cognitive-perceptual, affective, and impulsive-behavioral dysregulation. Bull Menninger Clin. 1998;62(2):195–214. PubMed
Ingenhoven T. Pharmacotherapy for borderline patients: business as usual or by default? J Clin Psychiatry. 2015;76(4):e522–e523. PubMedCrossRef
Drews E, Fertuck EA, Koenig J, et al. Hypothalamic-pituitary-adrenal axis functioning in borderline personality disorder: a meta-analysis. Neurosci Biobehav Rev. 2019;96:316–334. PubMedCrossRef
Thomas N, Gurvich C, Hudaib A-R, et al. Systematic review and meta-analysis of basal cortisol levels in borderline personality disorder compared to non-psychiatric controls. Psychoneuroendocrinology. 2019;102:149–157. PubMedCrossRef
Wingenfeld K, Dettenborn L, Kirschbaum C, et al. Reduced levels of the endocannabinoid arachidonylethanolamide (AEA) in hair in patients with borderline personality disorder—a pilot study. Stress. 2018;21(4):366–369. PubMedCrossRef
Blaney C, Sommer J, El-Gabalawy R, et al; CIHR Team in Defining the Burden and Managing the Impact of Psychiatric Comorbidity in Immune-Mediated Inflammatory Disease. Incidence and temporal trends of co-occurring personality disorder diagnoses in immune-mediated inflammatory diseases. Epidemiol Psychiatr Sci. 2020;29:e84. PubMedCrossRef
Díaz-Marsá M, Macdowell KS, Guemes I, et al. Activation of the cholinergic anti-inflammatory system in peripheral blood mononuclear cells from patients with borderline personality disorder. J Psychiatr Res. 2012;46(12):1610–1617. PubMedCrossRef
MacDowell KS, Marsá MD, Buenache E, et al. Inflammatory and antioxidant pathway dysfunction in borderline personality disorder. Psychiatry Res. 2020;284:112782. PubMedCrossRef
Anderson G. Pathoetiology and pathophysiology of borderline personality: role of prenatal factors, gut microbiome, mu- and kappa-opioid receptors in amygdala-PFC interactions. Prog Neuropsychopharmacol Biol Psychiatry. 2020;98:109782. PubMedCrossRef
O’Neill A, Frodl T. Brain structure and function in borderline personality disorder. Brain Struct Funct. 2012;217(4):767–782. PubMedCrossRef
Mocking RJT, Assies J, Ruhé HG, et al. Focus on fatty acids in the neurometabolic pathophysiology of psychiatric disorders. J Inherit Metab Dis. 2018;41(4):597–611. PubMedCrossRef
Hibbeln JR, Linnoila M, Umhau JC, et al. Essential fatty acids predict metabolites of serotonin and dopamine in cerebrospinal fluid among healthy control subjects, and early- and late-onset alcoholics. Biol Psychiatry. 1998;44(4):235–242. PubMedCrossRef
Pawełczyk T, Grancow-Grabka M, Trafalska E, et al. An increase in plasma brain derived neurotrophic factor levels is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: secondary outcome analysis of the OFFER randomized clinical trial. Psychopharmacology (Berl). 2019;236(9):2811–2822. PubMedCrossRef
Giacobbe J, Benoiton B, Zunszain P, et al. The anti-inflammatory role of omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative, and neurological disorders. Front Psychiatry. 2020;11:122. PubMedCrossRef
Freeman MP, Hibbeln JR, Wisner KL, et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry. 2006;67(12):1954–1967. PubMedCrossRef
Assies J, Pouwer F, Lok A, et al. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PLoS One. 2010;5(5):e10635. PubMedCrossRef
Zaalberg A, Vanhouche, A-S, Smoyer A, et al. Voeding En Justitiabelen: Van Strafelement Naar Rehabilitatie-Instrument? Wetenschappelijk Onderzoek- en Documentatiecentrum; 2018.
Firth J, Teasdale SB, Allott K, et al. The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry. 2019;18(3):308–324. PubMedCrossRef
Moher D, Liberati A, Tetzlaff J, et al; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. PubMedCrossRef
Stoffers‐Winterling JM, Storebø OJ, Völlm BA, et al. Pharmacological interventions for people with borderline personality disorder. Cochrane Database Syst Rev. 2018(2):CD012956. CrossRef
Mocking RJ, Harmsen I, Assies J, et al. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry. 2016;6(3):e756. PubMedCrossRef
Higgins JPT, Altman DG, Gøtzsche PC, et al; Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. PubMedCrossRef
Guyatt GH, Oxman AD, Schünemann HJ, et al. GRADE guidelines: a new series of articles in The Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4):380–382. PubMedCrossRef
Upton J. Beck Depression Inventory (BDI). In: Gellman MD, Turner JR, eds. Encyclopedia of Behavioral Medicine. Springer New York; 2013:178–179.
Gonzalez JS, Shreck E, Batchelder A. Hamilton Rating Scale for Depression (HAM-D). In: Gellman MD, Turner JR, eds. Encyclopedia of Behavioral Medicine. Springer New York; 2013:887–888.
Coccaro EF. The Overt Aggression Scale Modified (OAS-M) for clinical trials targeting impulsive aggression and intermittent explosive disorder: validity, reliability, and correlates. J Psychiatr Res. 2020;124:50–57. PubMedCrossRef
Dougherty DM, Marsh DM, Mathias CW. Immediate and delayed memory tasks: a computerized behavioral measure of memory, attention, and impulsivity. Behav Res Methods Instrum Comput. 2002;34(3):391–398. PubMedCrossRef
Hall RCW, Parks J. The modified global assessment of functioning scale: addendum. Psychosomatics. 1995;36(4):416–417. PubMedCrossRef
Kay SR, Opler LA, Lindenmayer J-P. The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation. Br J Psychiatry suppl. 1989;155(7):59–67. PubMedCrossRef
Quilty LC, Robinson JJ, Rolland JP, et al. The structure of the Montgomery-Åsberg Depression Rating Scale over the course of treatment for depression. Int J Methods Psychiatr Res. 2013;22(3):175–184. PubMedCrossRef
Giesen-Bloo JH, Wachters LM, Schouten E, et al. The Borderline Personality Disorder Severity Index-IV: psychometric evaluation and dimensional structure. Pers Individ Dif. 2010;49(2):136–141. CrossRef
Maier W, Buller R, Philipp M, et al. The Hamilton Anxiety Scale: reliability, validity and sensitivity to change in anxiety and depressive disorders. J Affect Disord. 1988;14(1):61–68. PubMedCrossRef
Reise SP, Moore TM, Sabb FW, et al. The Barratt Impulsiveness Scale-11: reassessment of its structure in a community sample. Psychol Assess. 2013;25(2):631–642. PubMedCrossRef
Sansone RA, Wiederman MW, Sansone LA. The Self-Harm Inventory (SHI): development of a scale for identifying self-destructive behaviors and borderline personality disorder. J Clin Psychol. 1998;54(7):973–983. PubMedCrossRef
Rybarczyk B. Social and Occupational Functioning Assessment Scale (SOFAS). In: Kreutzer JS, DeLuca J, Caplan B, eds. Encyclopedia of Clinical Neuropsychology. Springer New York; 2011:2313.
Busner J, Targum SD. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry (Edgmont). 2007;4(7):28–37. PubMed
Ingenhoven TJ, Duivenvoorden HJ. Differential effectiveness of antipsychotics in borderline personality disorder: meta-analyses of placebo-controlled, randomized clinical trials on symptomatic outcome domains. J Clin Psychopharmacol. 2011;31(4):489–496. PubMedCrossRef
Zanarini MC, Frankenburg FR. omega-3 Fatty acid treatment of women with borderline personality disorder: a double-blind, placebo-controlled pilot study. Am J Psychiatry. 2003;160(1):167–169. PubMedCrossRef
Bellino S, Bozzatello P, Rocca G, et al. Efficacy of omega-3 fatty acids in the treatment of borderline personality disorder: a study of the association with valproic acid. J Psychopharmacol. 2014;28(2):125–132. PubMedCrossRef
Bozzatello P, Rocca P, Bellino S. Combination of omega-3 fatty acids and valproic acid in treatment of borderline personality disorder: a follow-up study. Clin Drug Investig. 2018;38(4):367–372. PubMedCrossRef
Hallahan B, Hibbeln JR, Davis JM, et al. Omega-3 fatty acid supplementation in patients with recurrent self-harm: single-centre double-blind randomised controlled trial. Br J Psychiatry. 2007;190(2):118–122. PubMedCrossRef
Amminger GP, Chanen AM, Ohmann S, et al. Omega-3 fatty acid supplementation in adolescents with borderline personality disorder and ultra-high risk criteria for psychosis: a post hoc subgroup analysis of a double-blind, randomized controlled trial. Can J Psychiatry. 2013;58(7):402–408. PubMedCrossRef
Buydens-Branchey L, Branchey M. Long-chain n-3 polyunsaturated fatty acids decrease feelings of anger in substance abusers. Psychiatry Res. 2008;157(1–3):95–104. PubMedCrossRef
Long SJ, Benton D. A double-blind trial of the effect of docosahexaenoic acid and vitamin and mineral supplementation on aggression, impulsivity, and stress. Hum Psychopharmacol. 2013;28(3):238–247. PubMedCrossRef
Mocking RJT, Steijn K, Roos C, et al. Omega-3 fatty acid supplementation for perinatal depression: a meta-analysis. J Clin Psychiatry. 2020;81(5):19r13106. PubMedCrossRef
Sutin AR, Milaneschi Y, Cannas A, et al. Impulsivity-related traits are associated with higher white blood cell counts. J Behav Med. 2012;35(6):616–623. PubMedCrossRef
Sutin AR, Terracciano A, Deiana B, et al. High neuroticism and low conscientiousness are associated with interleukin-6. Psychol Med. 2010;40(9):1485–1493. PubMedCrossRef
Suchankova P, Holm G, Träskman-Bendz L, et al. The +1444C>T polymorphism in the CRP gene: a study on personality traits and suicidal behaviour. Psychiatr Genet. 2013;23(2):70–76. PubMedCrossRef
Peet M, Brind J, Ramchand CN, et al. Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res. 2001;49(3):243–251. PubMedCrossRef
Jamilian H, Solhi H, Jamilian M. Randomized, placebo-controlled clinical trial of omega-3 as supplemental treatment in schizophrenia. Glob J Health Sci. 2014;6(7 spec no):103–108. PubMed
Roberts DJ, Goralski KB. A critical overview of the influence of inflammation and infection on P-glycoprotein expression and activity in the brain. Expert Opin Drug Metab Toxicol. 2008;4(10):1245–1264. PubMedCrossRef
Wongrattanakamon P, Lee VS, Nimmanpipug P, et al. Nucleotide-binding domain 1 modelling: a novel molecular docking approach for screening of P-glycoprotein inhibitory activity of bioflavonoids. Chemical Data Collections. 2016;2:10–16. CrossRef
Mollazadeh S, Sahebkar A, Hadizadeh F, et al. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci. 2018;214:118–123. PubMedCrossRef
Wang JS, Taylor R, Ruan Y, et al. Olanzapine penetration into brain is greater in transgenic Abcb1a P-glycoprotein-deficient mice than FVB1 (wild-type) animals. Neuropsychopharmacology. 2004;29(3):551–557. PubMedCrossRef
El Ela AA, Härtter S, Schmitt U, et al. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds—implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56(8):967–975. PubMedCrossRef